题目
binary-tree-postorder-traversal
2. 算法
- 逆波兰
* 栈
* 递归
3. 代码
* 栈
class Solution {
public:
int evalRPN(vector<string> &tokens) {
if (tokens.size() == 1) return atoi(tokens[0].c_str());
stack<int> s;
for (int i = 0; i < tokens.size(); ++i) {
if (tokens[i] != "+" && tokens[i] != "-" && tokens[i] != "*" && tokens[i] != "/")
{
s.push(atoi(tokens[i].c_str()));
} else {
int m = s.top();
s.pop();
int n = s.top();
s.pop();
if (tokens[i] == "+") s.push(n + m);
if (tokens[i] == "-") s.push(n - m);
if (tokens[i] == "*") s.push(n * m);
if (tokens[i] == "/") s.push(n / m);
}
}
return s.top();
}
};
* 递归
class Solution {
public:
int evalRPN(vector<string>& tokens) {
int op = tokens.size() - 1;
return helper(tokens, op);
}
int helper(vector<string>& tokens, int& op) {
string s = tokens[op];
if (s == "+" || s == "-" || s == "*" || s == "/") {
int v2 = helper(tokens, --op);
int v1 = helper(tokens, --op);
if (s == "+") return v1 + v2;
else if (s == "-") return v1 - v2;
else if (s == "*") return v1 * v2;
else return v1 / v2;
} else {
return stoi(s);
}
}
};