Tensorflow神经网络


1. 使用交叉上代替二次代价函数


# 定义交叉商代价函数

loss =tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))

* 和二次代价函数比较

  • 迭代速度块
  • 准确率提高了1%左右

* 原因

* 二次代价函数,求导如下

  • 交叉熵代价函数,求导如下

* 结论

  • 输出神经元是线性,这二次代价函数是合适的旋转 * 输出神经元是S型函数,则交叉熵合适

2. 过拟合

* 解决方式

  • 增加数据集
  • 正则化的方法
  • Dropout

* dropout

  • 使用后,收敛速度变慢
  • 使用test数据集和train数据集,dropout解决过拟合
#!/usr/bin/python2.7
# -*- coding: UTF-8 -*-



import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import matplotlib.pyplot as plt

# 载入数据
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)

# 定义批次大小
batch_size=100

#计算批次个数
n_batch=mnist.train.num_examples // batch_size

#  定义placeholder
x=tf.placeholder(tf.float32,[None,784]) # None和batch_size关联
y=tf.placeholder(tf.float32,[None,10])
keep_prob=tf.placeholder(tf.float32)


#创建一个简单的神经网络
W1 = tf.Variable(tf.truncated_normal([784,2000],stddev=0.1))
b1 = tf.Variable(tf.zeros([2000])+0.1)
L1 = tf.nn.tanh(tf.matmul(x,W1)+b1)
L1_drop = tf.nn.dropout(L1,keep_prob)

W2 = tf.Variable(tf.truncated_normal([2000,2000],stddev=0.1))
b2 = tf.Variable(tf.zeros([2000])+0.1)
L2 = tf.nn.tanh(tf.matmul(L1_drop,W2)+b2)
L2_drop = tf.nn.dropout(L2,keep_prob)

W3 = tf.Variable(tf.truncated_normal([2000,1000],stddev=0.1))
b3 = tf.Variable(tf.zeros([1000])+0.1)
L3 = tf.nn.tanh(tf.matmul(L2_drop,W3)+b3)
L3_drop = tf.nn.dropout(L3,keep_prob)

W4 = tf.Variable(tf.truncated_normal([1000,10],stddev=0.1))
b4 = tf.Variable(tf.zeros([10])+0.1)
prediction = tf.nn.softmax(tf.matmul(L3_drop,W4)+b4)


# 定义交叉商代价函数

loss =tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))

#使用梯度下降算法

train_step=tf.train.GradientDescentOptimizer(0.2).minimize(loss)

# 初始化变量

init=tf.global_variables_initializer()

# 结果存放在bool列表

correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))

#求准确吕

accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

with tf.Session() as sess:
     sess.run(init)
     for epoch in range(31):  #所有图片训练21次
         for bacth in range(n_batch):
             batch_xs,batch_ys=mnist.train.next_batch(batch_size)
             sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7})  #1.0是dropout无作用,全部连接

         test_acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})  #测试集的数据
         train_acc = sess.run(accuracy, feed_dict={x: mnist.train.images, y: mnist.train.labels, keep_prob: 1.0})
         print("Iter " + str(epoch) + ",Testing Accuracy " + str(test_acc) + ",Training Accuracy " + str(train_acc))

3 优化器

* Tensorflow的优化器

* adadekle速度最快,然后是adegrad和RMSprop,SGD速度慢

* SGD准确度高


#使用梯度下降算法

# train_step=tf.train.GradientDescentOptimizer(0.2).minimize(loss)

train_step=tf.train.AdamOptimizer(1e-2).minimize(loss)

4. 提高准确率到98%(Softmax的识别准确率)

results matching ""

    No results matching ""