随机梯度算法综述
SGD
此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 mini-batch gradient descent的具体区别就不细说了。现在的SGD一般都指mini-batch gradient descent。
SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了。即:
* 缺点
- 选择合适的learning rate比较困难
- 对所有的参数更新使用同样的learning rate。对于稀疏数据或者特征,有时我们可能想更新快一些对于不经常出现的特征,对于常出现的特征更新慢一些,这时候SGD就不太能满足要求了
- SGD容易收敛到局部最优,在某些情况下可能被困在鞍点(但是在合适的初始化和学习率设置下,鞍点的影响其实没这么大)
Momentum
- momentum是模拟物理里动量的概念,积累之前的动量来替代真正的梯度。公式如下:
* 特点
- 下降初期时,使用上一次参数更新,下降方向一致,乘上较大的μ能够进行很好的加速
- 下降中后期时,在局部最小值来回震荡的时候,gradient→0,μ使得更新幅度增大,跳出陷阱 在梯度改变方向的时候,μ能够减少更新
- 总而言之,momentum项能够在相关方向加速SGD,抑制振荡,从而加快收敛
Nesterov
- nesterov项在梯度更新时做一个校正,避免前进太快,同时提高灵敏度。将上一节中的公式展开可得:
momentum首先计算一个梯度(短的蓝色向量),然后在加速更新梯度的方向进行一个大的跳跃(长的蓝色向量),nesterov项首先在之前加速的梯度方向进行一个大的跳跃(棕色向量),计算梯度然后进行校正(绿色梯向量)
其实,momentum项和nesterov项都是为了使梯度更新更加灵活,对不同情况有针对性。但是,人工设置一些学习率总还是有些生硬,接下来介绍几种自适应学习率的方法