Tensorboard
代码
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import matplotlib.pyplot as plt
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
batch_size=100
n_batch=mnist.train.num_examples // batch_size
def variable_summaries(var):
with tf.name_scope('summaries'):
mean=tf.reduce_mean(var)
tf.summary.scalar('mean',mean)
with tf.name_scope('stddev'):
stddev=tf.sqrt(tf.reduce_mean(tf.square(var-mean)))
tf.summary.scalar('stddev',stddev)
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram',var)
with tf.name_scope('input'):
x=tf.placeholder(tf.float32,[None,784],name='x-input')
y=tf.placeholder(tf.float32,[None,10],name='y-input')
with tf.name_scope('layer'):
with tf.name_scope('weights'):
W=tf.Variable(tf.zeros([784,10]),name='W')
variable_summaries(W)
with tf.name_scope('biases'):
b = tf.Variable(tf.zeros([10]), name='b')
variable_summaries(b)
with tf.name_scope('wx_plus_b'):
wx_plus_b=tf.matmul(x,W)+b
with tf.name_scope('softmax'):
prediction=tf.nn.softmax(tf.matmul(x,W)+b)
with tf.name_scope('loss'):
loss =tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
tf.summary.scalar('loss',loss)
with tf.name_scope('train'):
train_step=tf.train.GradientDescentOptimizer(0.2).minimize(loss)
init=tf.global_variables_initializer()
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))
with tf.name_scope('accuracy'):
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', accuracy)
merged=tf.summary.merge_all()
with tf.Session() as sess:
sess.run(init)
writer=tf.summary.FileWriter('milogs/',sess.graph)
for epoch in range(51):
for bacth in range(n_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
summary,_=sess.run([merged,train_step],feed_dict={x: batch_xs, y: batch_ys})
writer.add_summary(summary,epoch)
acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
print("iter " + str(epoch) + " ,Testing Accuracy " + str(acc))
可视化