凸优化的基础
1. 凸优化的基本形式
subject to
其中:是凸函数,
可行解:满足约束条件的解
可行域:所有可行解的集合
凸优化问题的可行域是凸集;凸优化问题的局部最优解是全局最优解
2. 拉格朗日乘子法
- 拉格朗日函数
固定x,拉格朗日函数是关于和 的仿射函数
- 拉格朗日乘子法将约束问题等价于无约束问题
3. 优化问题
* 分类
- 无约束优化
- 约束优化
- 等式约束优化
- 不等式约束优化
* 约束优化的算法
- Largrangian法(KKT)
- 罚函数法
- largrangian法和罚函数法的结合(增广乘子法)