Neural paraphrase generatio with stacked residual LSTM Network
* Prakash 2016
1. Introduction
* Paraphrasing 的三种形式
- recognition
- extraction
- genration
2 传统的PG方法
传统方法的综述
- Madnani 2010
- Generating Phrasal and Sentential Paraphrases: A Survey of Data-driven Methods
手动制作规则的方法
- McKeown. 1983.
- Paraphrasing Questions Using Given and New Information
* 自动学习复杂模式
- zhao 2009
- Application-driven Statistical Paraphrase Generation
* 使用知识库
- Hassan 2007
- UNT: SubFinder: Combining Knowledge Sources for Automatic Lexical Substitution.
* 语义分析
- Kozlowski 2003
- Generation of Single-sentence Paraphrases from Predicate/Argument Structure Using Lexico-grammatical Resources
* 机器翻译
- Quirk 2004
Monolingual Machine Translation for Paraphrase Generation
Wuben 2010 Paraphrase Generation As Monolingual Translation: Data and Evaluation.
3 基于深度学习的方法
* seq2seq模型
- Sutskever
- Sequence to Sequence Learning with Neural Networks
* 在多个领域有研究,但是对于PG 应用还很少
* 使用多种已经存在的seq2seq模型
* 提出新的LSTM网络来解决PG问题
灵感来源于
He 2015
Deep Residual Learning for Image Recognition
* 基于LSTM
- Cho 2014
Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation.
4. 关于DL
* RNN
- Sutskever 2011
- Generating Text with Recurrent Neural Networks
* RNN的相关
LSTM
GRU
5 模型的描述
* seq2seq
- Sutskever 2014
Sequence to Sequence Learning with Neural Networks